Correction: Balancing Teaching and Research in Obtaining a Faculty Position at a Predominantly Undergraduate Institution

Deborah C. Tahmassebi and James R. Williamson

Because of a production error, Deborah C. Tahmassebi's email address was listed incorrectly. The correct email address is debbiet@sandiego.edu. We regret this error. The electronic version was corrected and reposted to the web on August 31, 2007.

ACS Chem. Biol. 2006, 1, 585-593

Correction: Design and Characterization of a Thyroid Hormone Receptor α (TR α)-Specific Agonist

Cory A. Ocasio and Thomas S. Scanlan

The updated email address for the corresponding author of the original article is scanlant@ohsu.edu. In Experimental Methods, two references were incorrect in the Quantitative rt-PCR Assay paragraph. The corrected paragraph appears below in its entirety. The authors regret any inconvenience this may have caused.

QUANTITATIVE RT-PCR ASSAY

Total RNA was extracted from head, HL, and tail tissue from groups of 6-10 tadpoles using TRIzol reagent (Invitrogen) according to the manufacturer's specifications. The total RNA was processed as described previously (18), and the C_{T} method (Applied Biosystems User Bulletin no. 2) was employed to quantify gene induction normalized to the Xenopus 18 S rRNA subunit (RL8) and relative to a physiological calibrator. Relative gene induction was quantified with the eq $2^{-\Delta \Delta C T}$ in sextuplicate, and the standard deviation was calculated using the comparative method described in User Bulletin no. 2. rt-PCR reactions were carried out on a DNA Engine Opticon2, and the data were analyzed using Opticon software. Primers used to detect RL8 and collagenase-3 were the same as reported previously (18). Primers used to detect all other target genes were designed using the Primer3 Web site (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi), and the sequences are as follows: xTR α f, $5^{\prime}-$ CTA CGA TCC AGA CAG CGA GAC-3'; xTR α r, 5^{\prime} - GTT CAA AGG CGA GAA GGT AGG-3'; xTR β f, 5'- ATG GCA ACA GAC TTG GTT TGG-3'; xTRß r, 5'- CGC ATT AAC TAT GGG AGC TTG-3'; xBTEB f, 5'-CCA TCT CAA AGC CCA CTA CAG-3'; xBTEB r, 5'- GAA TTG GAC CTT TTG GAC CTT-3'.

